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with respect to ventilation characteristics and effectiveness in protecting a shelter
from the hot blast of a nuclear explosion. Tests indicated an airflow of 4 cfm per
square foot of filter area for a 36-is@h depth of sand, 6 cfm for q 24-inch depth,
and 12 cfm for a 12-id8R ‘depth when the pressure drop is 1~ineh water-gaged.
Special equipment was built to release compressed air to simulate the blast from a
nuclear explosion. A mods! shelter consisting of a steel tank was connected to the
air-blast device through an 8~ik&h-diameter sand filter, The filter proved to be
reasonably effective in attenuating blast when subjected to overpressures up to

100 psi with a positive time duration of about 2 seconds. However, the effective-
ness varied with changes in the size of sand grains even though the changes were
within the filter specifications.

The heat-absorbing characteristics of the sand were studied under conditior.s
similar to a nuclear blast, by subjecting the filter to blasts of hot pressurized air.
Heat~absorption characteristics were also studied, in 24-hour tests simulating night
and day, when ventilating air of varying temperatures was passed through the filter.
The sand proved to be an excellent heat absorber, maintaining the outlet temperature
at an acceptable level.

$imee.g sand filter i§ not a positive closure device, it has o typical response {
for a given %pulse and the\response depends on its physical characteristics, Conse-

quently, if a filter is to be &lassified as safe for a certain overpressure and time
duration, the fiiter as a unit should be pretested or the sand must be very carefully
graded and matched against control samples, .-

7y

Quoalified requestars may obfain copiéY of this report from DDC.
The Laboratery invites comment on thisXaport, particularly on the
results obtained by those who hitve aphligd the informotion
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INTRODUCTION

Following World War 11 the use of sand filters for shelter=ventilation systems
was investigated and to some extent adopted in Germany and other parts of Europe.
Consequently, information on the size of sand grains, on the depth of sand, and on
various other characteristics was available but the capacity of the sand to protect
against blast and heat was uncertain. NCEL was assigned a task to obtain more
extensive data on the nomal ventilation characteristics and to determine if sand
could protect the shelter from the hot blasts of nuclear explosions and heated
ventilating air resulting from fires. This information was obtained by three separate
experiments; the first deals with ventilation characteristics under normal operating
conditions, the second with blast attenuation, and the third with heat absorption,
This work was partially sponsored by the Defense Atomic Support Agency through
the Bureau of Yards and Docks.

VENTILATION FLOW CHARACTERISTICS
Description of Equipment

Figure 1 shows the method used to determine airflow rates and pressure drops
through the sand filter. Because they are more accurate, compressed air and rota-
meters were used in preference to a pressure fan and pitot tube. The box holding
the sand was 1 square foot in cross section and was deep enough to test 40 inches

of sand. The sand was supported by o perforated sieel plate, a screen, and 2 inches
of gravel.

The sand used in this test conformed to the Artos Machinery Company
specifications: 80 to 90 percent from 1 mm to 3 mm, 5 to 15 percent from 0,2 mm
to 1 mm. and up to 5 percent less than 0.2 mm,

Test Procedure

A layer of 12 inches of sand was placed on the gravel support and vibrated
with a concrete vibrator. Compressed air was then allowed to flow through the
sand, and the airflow rate was measured by the rotameter and the static pressure
drop by a micrometer. This procedure was repeated for 24 and 36 inches of sand,
with é to 10 readings for each depth.
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Figure 1. Determination of airflow rate through sand.
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Test Results

The dota from these tests is shown in Table |. At a 1-inch static pressure drop
(probably the limit for hand-operated equipment) the flow is almost inversely propor-
tional to the depth. Table |l shows the filter cross-section areas which would be
required for various shelter populations based on a ventilation rate of 3 cfm per
person and a 1=inch static pressure drop. Table |l emphasizes the large areas required
for 100 people, particularly when a 36-inch depth of sand is necessary.

Table 1. Static Airflow Rates Through Sand (in cfm per sq ft of filter area)

Sand Pressure Drop (in. of water)

Depth

(in.) 0.2 0.4 0.6 0.8 1.0 1.2 1.4
12 2,7 5 7.2 9.3 12 14 16
24 1.3 2,3 3.6 4.8 6 7 8
36 1 1.8 2.5 3.3 4 4,8 5.6

Table Il. Filter Cross-Section Area Required for Ventilation
(at 3 cfm per person and 1 in, W. G, static
pressure drop)

Sand No. of People in Shelter
Depth
(in.) 25 50 75 100
12 6.25 f2 12,5 2 18.75 f12 25 ft2
24 12.5 25 37.5 50
36 18.75 37.5 56.2 75
3




BLAST ATTENUATION

If a sand filter were built into the ventilation system of a shelter and tested
in the field with a nuclear bomb, the shock wave emanating from the bomb and
traveling somewhat faster than the speed of sound would approach the filter like a
wall of compressed air. As the wave front approached, the overpressure would rise
very rapidly to a maximum, As the wave front passed, the pressure would taper off
to zero and become negative. The filter would therefore be subjected to a sudden
peak overpressure followed by diminishing pressure. The magnitude and duration of
the overpressure depends on the size of the bomb and the distance from ground zero
to the point of measurement. The positive phase of a nuclear blast can be simulated
on a small scale by using compressed air. A model (Figure 2) was built in which a
large steel tank, called an Air Blast Device, held the compressed air, and another
steel tank, called the plenum chamber, represented a shelter. A sand filter connec-
ted to this plenum chamber was subjected to various overpressures.

Rather than a true model it was necessary to design an adequate model in
which the depth of the filter and characteristics of the sand were the same as the
prototype. The cross-sectional area of the filter and volume of the plenum were
reduced in scale by equal amounts. All of the quantities pertaining to the dynamic
load, including the rise time and overpressure, were scaled the same in the model
as in the prototype. Factors and pi terms for the dimensional analysis are shown in
Table 111, There are an infinite number of shelter-to-filter combinations; Table 1V
shows those tested in this experiment. The ventilation rates are based on a 1-inch
water pressure drop.

Table 111, Dimensional Analysis

Factors Pi Terms

u velocity of air v
q overpressure applied to filter ﬁf ’ s ' £
P pressure rise in plenum pu V2 q
U viscosity
a area of filter puv,
v volume of filter o

1 pa gr
Vg volume of plenum
T time _u_2_a_ Eu2'r
g acceleration of gravity v, ! m
[ density of air




Figure 2. Model and Air Blast Device.
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Description of Air-Blast Device

Figure 3 skows a diagram of the fundamental components. The volume of
compressed air is controlled by partially filling the tank with water. When the air=-
actuated plug valve is opened, air rushes into the tube and builds up a pressure ‘on
the mylar diaphragm. The diaphragm bursts, resulting in a sudden pressure-rise on
top of the sand and a restricted airflow into the plenum. When the air-actuated
plug valve opens, two relief valves also open, causing the pressure on the sand to
drop quite rapidly. As a result of this sequence of operation, the pressure immedi=
ately above the sand reaches a peak in 20 to 45 milliseconds and then decays to
almost zero within one fo six seconds. Preliminary tests in the NCEL Atomic Blast
Simulator in which the rise time was 4 milliseconds resulted in a gradual pressure rise
below the sand, indicating flow phenomena; consequently the rise times of 20 to
45 milliseconds were considered satisfactory. The peak pressure obtained with the
Air Blast Device is a function of the original pressure in the supply tank. Decay
time is controlled by presetting the water level in the supply tank to adjust the
volume of air and by partially opening the two gate valves to govern the rate of
airflow from the tank. In an actual blast, the overpressure at any time can be
closely represented by the empirical equation 1

t -t/t
o) = p(1 - L) o™

where p(t) is the overpressure at any time, t, after the arrival of the shock front;

p is the peak overpressure; and t+ is the duration of the positive phase of the blast
wave. The pressure process represented by this equation may be approximated rather
well by the equipment just described.

Pressure cells (strain gages) were installed in the plenum and a few inches
above the sand filter. Rapid-response thermocouples were installed above and
below the sand and in the plenum. Leads from both pressure cells and thermo-
couples were connected through amplifiers to a Consolidated Electrodynamic
Corporation oscillograph which records on light-sensitive paper. A fyplccll set of
traces copied directly from an oscillograph record is shown in Figure 4; since the
traces are made by tiny rays of light which produce solid lines on the paper, their
positions must be separated at the origin in order to identify them.
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Test Procedure

The tests on the blast attenuation of the filter were done in three sections: A,
B, and C, Section A was an extensive test of an 8~inch diumeter filter. The size.
of the sand grains conformed to the Artos specifications. Section B, although similar
to A, was less extensive and used a 12-inch diameter filter. Section C was a test
of the 8-inch diameter filter, but the sand gradations were carefully controlled. In -
all tests, the sand was kept dry and was compacted by tapping the outside of the
filter with a hammer, The following information was collected:

P, — pressure in supply tank before shot

p, " Pressure immediately above sand

Py~ pressure in plenum

t, — temperature immediately above sand

t,, — temperature immediately below sand

fp — temperature in plenum

Section A Tests. The sand used in the Section A tests was taken at random
from a batch graded as follows: 80 to 90 percent from 1 mm to 3 mm; 5 to 15 percent
from 2 mm to 1 mm; and 0 to 5 percent less than 2 mm.

The Section A tests conducted are tabulated as follows:

Plenum Filter Filter Overoressure™ Time
Volyme Diameter Depth* ve p( ) Duration
(f'r3) (in.) (in.) P (sec)
30, 45, 60 8 12, 24, 36 15, 30, 45 2
60, 75, 100

* These depths were used with each plenum volume.
** These values of overpressure were applied to each filter depth.

Section B Tests. The sand prepared for the Section A tests was also used in
the Section B tests of a 12=inch-diameter filter. '

10
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The Section B tests are tabulated as follows:

Plenum Filter Filter
Volume Diameter . Depth*
(F+3) (in.) (in.)

105 12 . 24, 36

Overpressure**

(psi)

15, 30, 45
60, 75, 100

Time
Duration
(sec)

2

* Each filter depth tested with the one plenum volume,

** These values of overpressure were applied to each filter depth.

Section C Tests. The Artos Machinery Company specified that 80 to 90 percent
of the sand should be between 1 to 3 mm; up to 15 percent between 0.2 and 1 mm;
and 0 fo 5 percent less than 0.2 mm. Without a normal distribution, one sample of
sand might have a preponderance of particles close fo 3 mm, and another sample
might be largely 1 mm plus the maximum percentage of finer particles. To study
the effect of such abnomal particle distributions, the following two samples were

tested:
, Particle
Sample U. S. Sieve No. Size Percentage
(mm)
1 (coarse)” 6-8 2,38 - 3.3 100
2 (fine)** 12-16 1.19 - 1.68 90
50-40 .25 - .30 5
60 and smaller .25 and less 5

* See Figure 5
** See Figure 6

11
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Figure 6. Sample of fine sand.

Figure 5. Somple of coarse sand.




The Section C tests on each of the samples above are tabulated as follows:

Plenum Filter Filter . Time
Volume Diameter Depth® Overp(re?;ure Duration
(Ft3) (in.) (in.) ps (sec)

30, 45 8 36 80, 100 2

* This depth tested with each plenum volume.
** Both values were applied to filter.

It should be noted that in Section A, B, and C tests, the overpressures and
time durations could not be controlled accurately so the values shown are only
approximate.

Test Results

Figures A-1 through A-4 in Appendix A, show the curves of plenum pressure
versus overpressure for the Section A tests. Figure A=5 shows the curves of
Section B tests, and Figures A-6 and A-7 show curves of the Section C tests.

It was assumed that the most useful way to present the data would be to plot
plenum pressure versus overpressure. This could not be done directly because the
duration of the shock would have to be the same for all shots, and it was not practi=-
cal to obtain uniform time durations. However, impulse combines the time with
overpressure and values for impulse were plotted against plenum pressure. It was
then easy to work backwards and obtain the values to plot plenum pressure versus
overpressure at the prescribed time duration of 2 seconds. An example showing how
this correction procedure was done is given in Appendix B, Table B-1 in Appendix B
is a typical set of data, and Figure B~1 is a graph showing plenum pressure versus
impulse. The resulting plenum pressure versus overpressure for this set of data is
shown in Figure A-3.

The Section B tests were made to determine whether a larger size filter
connected to a larger plenum would show any unexpected results which could be
attributed to effects from the wall of the filter or to other flow phenomena. The
49-square~inch filter area and 45~cubic=foot plenum volume used in the Section A
tests were a little more than doubled for this experiment, but the results revealed
nothing unusual, In Figure A=5, there are small and inconsistent differences in
plenum pressure as compared with the Section A tests, but these differences are
probably due to sand distribution as determined in the Section C tests,

13




The results of the Section C tests show that the airflow through the sand varied
considerably as the size distribution of the grains was changed, even though the
distribution remained within the specificaiions of the Artos Machinery Company. The
fine sand and the specified sand both meet specifications. The coarse sand contains

100 percent of the largest grains, but, even so, it comes close to meeting the
specifications.

Figure A~6 emphasizes how the samples differed from each other in resisting
the blast. At 100 psi overpressure (2 seconds duration), the fine sand pemitted a
pressure rise of only 3 psi in the plenum. On the other hand, the coarse sand pemmit-
ted a pressure rise of over 9 psi in the plenum. It is evident that a modest change in
particle size causes a marked change in the blast-attenuating properties of the sand.
In view of the fact that sand has a natural tendency to segregate and in view of the
fact that 90 percent of the Artos sand can be as large as 3 mm or as small as 1 mm,
it is not surprising that every batch has its own characteristics, Consequently, if
a sand filter is to be used in higher overpressure regions, e.g., 100 psi at 2 seconds
duration, the sand must be carefully graded. If a sand filter is fo be used in low
overpressure regions, e.g., 25 psi af 2 seconds duration, the Artos sand or similar
commercial grades would be satisfactory. The time duration is of course extremely
important when considering the sand as a blast attenuator. Since the sand is not a
closure device, it can only retard the cirflow, it cannot exclude it. The cost of
carefully graded sand is approximately six times greater than Artos-type sand. As
for other sands, such as those from beaches or dry river beds, it would seem to be a
dangerous practice to use them, Probably the only safe approach to the whole

problem would be to pretest the filter as @ unit or to carefully grade the sand and
match it against control samples.

The tests in this task have been very useful in giving an evaluation of the
Artos Sand Filter. The results of the specified sand indicate that under minimum
conditions™ of ventilation and occupancy the filter would give blast protection™
from a 1-megaton burst, to a shelter located 3500 feet or more from ground zero.
In this instance the overpressure would be 100 psi and the time duration 1.4 seconds.
It would probably give protection from a 10-megaton burst, to a shelter located
10, 000 feet from ground zero, in which case the overpressure would be 50 psi and
the time duration 2,8 seconds,

* 3 cfm fresh air per person and 66 cubic feet of space per person

** Blast protection here assumes a 5-psi maximum-allowable pressure rise in the
* shelter2

14
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CHARACTERISTICS OF SAND FILTERS WITH RESPECT TO ABSORPTION AND
DISSIPATION OF HEAT

Hot~Blast Tests

If a shelter with a sand filter were tested in the field with a nuclear blast of
100 psi, the temperature of the air striking the filter would be about 730 F at the
time of maximum pressure. The air would then expand isentropically causing the
temperature to drop to about 200 F by the end of the positive phase of the blast.

The temperatures recorded af peak overpressures in the blast-attenuation tests
were lower than the theoretical values so a series of tests was made using preheated
pressurized air. Figure 7 shows the equipment, including a 3.7-cubic-foot tank
which was mounted horizontally and connected to the top of the 8-inch shock tube.
Inside the tank, four heaters controlled by a variable transformer heated the air.
The location of thermocouples and pressure cells is shown in Figure 7. The filter
was 36 inches deep and the plenum volume was 45 cubic feet.

Four shots using heated air were made at 15-minute intervals in order to study
the movement of the temperature gradient through the sand. The results are shown
in Table V. All shots indicated good simulation of the pressure decay curve.
Although the temperature of the air dropped sharply as it expanded from the hot
tank, it dropped at a slow rate after striking the sand. Consequently, the tests were
reasonably severe. After the four shots, the temperature measured at 2 inches below
the sand surface had risen from ambient to 260 F, but at 6 inches below the surface
the maximum temperature recorded was only 83 F. During this same period, the
temperature 24 inches below the surface had actually dropped from 63 F to 61 F.
The thermodynamic processes in the sand filter are probably as follows: the first
few inches of sand quickly absorbs heat from the high-temperature air, and, as it
passes through the sand, the air cools still further from expansion. However, the
sand prevents the air from cooling more by adding heat when the temperature of the
air is lower than that of the sand. The process is, therefore, not adiabatic but one
in which the sand moderates the air temperature because of its relatively large
heat-storage capacity. Thus, it seems doubtful if a blast of 100 psi overpressure at
730 F would offer any temperature hazards to the occupants of a shelter protected
with a 36~inch sand filter.

* Temperature calculated from Hugoniot equation

15
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Table V. Hot-Blast Shots

Shot Shot Shot Shot
1 2 3 4
Temperature in hot air supply tank 661 F 655 F 670 F 668 F
Peck overpressure on sand 68.8 psi | 83.2psi | 77.6psi | 77.2 psi
Duration of shot 2.2 sec 1.85 sec 1. 85 sec 1.85 sec
Thermocouple temperature
A = above sand
before shot 75 F 88 F 88 F 90 F
maximum 360 L 363V 368l 369 L
end of shot 258 250 275 275
1 — 2 in. below sand surface
before shot 69 162 208 238
end of shot 93 206 232 260
2 — 6 in. below sand surface
before shot 65 67 69 75
end of shot é5 68 72 83
3 — 12 in. below sand surface
before shot 60 61 62 63
end of shot 60 61 62 64
4 — 24 in. below sand surface
before shot 63 63 62 61
end of shot 62 62 61 61
B — air below sand
before shot 61.5 61 40 59
end of shot 60 58.5 57 56.5
P = air inside plenum
before shot 67.5 71.5 71 72
end of shot 88 86 80.5 78
Pressure rise in plenum 3. 8 psi 4,4 psi 4,1 psi 3.9 psi

17 A temperature of 360 F is associated with a shock-wave overpressure of

approximately 40 psi.

17




Controlled Temperature Ventilation Tests

When hot air is drawn through a buried sand filter, it may be assumed in
advance that the sand will act as @ moderator to prevent the ventilating air from
entering the shelter at a high temperature, Its effectiveness in this respect depends
on its ability to absorb heat from the air, and then reject it to the surrounding soil
or to subsequent cool air. Some soils have a high resistance to heat flow, in which
case the absorbed heat would be retained by the sand until slowly carried into the
shelter by the cooler air. Conversely, some soils have a low resistance to heat flow,
in which case the absorbed heat would be readily transferred to the soil enhancing
the action of the sand as a moderator. Figure 8 illustrates the equipment with which
warm air was passed through the filter.

The filter was wrapped with 1 inch of fiberglass insulation. Four tests were
run at different airflows and inlet temperatures, Complete data can be seen by
examining Table VI and Figures 9, 10, 11, and 12, The significance of 1.3 c¢fm
and 3.5 cfm is their relationship to static pressure drop across 3 feet of sand. The
lower value corresponds to approximately 1 inch of water ard the higher value to
2,5 inches of water, The entering air temperatures in Tests 1, 3, and 4 are presum-
ably more rigorous than any situation which would be encountered in an actual
situation. Calculations were made to determine how much heat the filter could
reject to the soil. Two soils were considered: soil A, having a thermal conductivity
of 0.22 Btu/hr/sq ft/(deg F/ft) and thermal diffusivity of 0.011 sq ft/hr; and soil B,
having a thermal conductivity of 0. 80 and thermal diffusivity of 0.024. Ingersoll's3
formula was used in the calculations, assuming that the soil had been absorbing heat
from normal ventilation for two weeks. Other pertinent factors are given in Table VI.

The results of the four tests have been summarized in Table VI and Figures 9,
10, 11, and 12. In all cases the ability of the sand to absorb heat was excellent.
It can be seen from item 12 in Table VI that soil A would be unable to absorb the
total heat dissipated to the atmosphere. Item 13 indicates that soil B could absorb
much more than the total heat dissipated.

If the sand filter for an actual shelter consisted of a large concrete container
(Figure 13) much of the heat absorbed by the sand would be trapped in the center of
the filter and carried into the shelter before it could be dissipated to the soil. There-
fore, if it is the engineer's intention that the filter reject as much heat as possible
to the soil, it would be necessary to use a pipe grid (Figure 14) or possibly a long
narrow concrete container with a large amount of the surface exposed to the soil,

The practice of drawing in heated air for shelter ventilation is questionable since
this air may contain carbon monoxide from fires., The nontoxic environments which
might develop as a result of fire are difficult to predict.

18
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Table VI. Results of 24-Hour Controlled Temperature Ventilation Tests

1. Test 1 2 3 4
2, Cfm 1.3 3.5 3.5 3.5
3. Time of test (hr) 24 24 24 24
4. Max temp of air entering (F) 210 115 195 380
5. Max temp of air leaving (F) 70 70 85 105
6. Mean temp of air entering (F) 1/ 112 74 102.5 163.5
7. Mean temp of air leaving (F) I 64.5 60 71.2  83.3
8. Total heat entering filter via air (Btu) 2/ 1750 1710 4320 9400
9. Total heat leaving filter via air (Btu) 3z 153 460 1470 2120
10. Residual heat in sand after test (Btu)4s 195 =97 136 390
11. Heat lost through pipe wall (Btu) 1402 1347 2714 6890
(item 8 minus items 9 and 10)

12. Capacity of soil A to absorb heat (Btu)/ 1375 501 1330 2860
13. Capacity of soil B to absorb heat (Btu)/ 4380 1580 4180 8980

BSMENL T e e o e ceagerge et cn o+ o s

FERIE

1/ Mean temp equals datum temp plus the respective mean air temp rise. Datum temp
was 55 F for tests 2 and 3 and &0 F for tests 1 and 4, Mean air temp rise in each
case was computed from the area enclosed by the respective curve and datum line.
Areas were measured with a planimeter.

2/ Based on mean temp rise of air entering.

3/ Based on mean temp rise of air leaving.

4/ Based on difference between sand temp at beginning and end of test.

5/ Based on a 3-ft length of 8-inch-diameter steel pipe. Soil temp assumed to be
55 F, and pipe temp assumed to be the average of items 6 and 7.
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The estimated costs of material and construction for the filters shown in
Figures 13 and 14 are $4, 000 and $18, 000, respectively.

It should also be mentioned that dry sand with its relatively low thermal
conductivity effectively insulates the ventilation system against external heat when
the system is not operating.

CONCLUSIONS

1. Although the Artos sand filter will give significant blast protection against
1- and 10-megaton explosions, full knowledge of its capabilities would require
further testing at longer durations.

2. Within the Artos specifications the effectiveness of the sand varies with changes
in the size and distribution of the sand grains.

3. In low-pressure regions of medium time duration (25 psi at 2 seconds duration)
Artos sand would be satisfactory, but in high=pressure regions of medium time
duration (100 psi at 2 seconds duration) it would be necessary to use carefully
graded sand.

4, The hot~blast tests gave good evidence that the sand can protect a shelter
against the heat associated with overpressures up to 40 psi when the positive duration
is two seconds or less, and can probably protect a shelter against a much stronger
blast,

5. The controlled temperature ventilation tests showed that sand has excellent heat
absorption capabilities. Calculations also indicate that a well-designed filter in

certain types of soil would reject to the soil much of the absorbed heat.

6. The relatively high cost of a sand filter installation should be compared to the
cost of other systems offering equal protection.

REFERENCES

1. United States Atomic Energy Commission. The Effects of Nuclear Weapons,
edited by Samuel Glasstone. Washington, April 1962, p 124,

2, United States Atomic Energy Commission. The Effects of Nuclear Weapons,
edited by Samuel Glasstone. Washington, April 1962, p 557,

27




3. L. R. Ingersoll, et al. "Theory of Earth Heat Exchangers for the Heat Pump."
ASHAE Transactions, Vol. 57 (1951), pp 171-172.

4. Beer, Ferdinand P., and E. Russel Johnston, Jr., Mechanics for Engineers,
McGraw=-Hill, New York, 1957, p 455.

ACKNOWLEDGMENTS

Appreciation is expressed to Mr. Donald S. Teague, Jr., of NCEL for his
valuable advice concerning blast theory and model analysis, Appreciation is also
expressed to Mr. Robert S, Chapler of NCEL for his contribution as chief technician.

28




PRt e | Mo e i e A

Appendix A

BLAST ATTENUATION TEST CURVES
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Appendix B

SAMPLE DATA AND CALCULATIONS

The steps in obtaining values to plot plenum pressure versus overpressure were
as follows:

1. For each shot, the time duration of the blast wave is combined with
overpressure to give impulse using the formula4

| = t—Pi M
e
where Po = overpressure (psi)
t = duration of the positive phase in seconds
| = impulse (Ib-sec/in.2)
e=2.718

This formula is accurate at low overpressures but as overpressures are increased it
gives impulse values which are higher than those of a nuclear blast.

2. The data for a typical series of shots is shown in Table B=L,

3. Values for plenum pressure are then plotted against impulse as shown in
Figure B-1.

4, A linear regression is used fo obtain the best straight line through the
points. The equation for the line in Figure B=1 is

Y = 0.365 + 0.0362(X) @)

5. Values for plenum pressure and the corresponding impulse are then taken

from this straight line. These quantities are listed in the first two columns of the
following table.
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Equation 1 with t = 2 seconds is used to compute the corrected overpressures.

Impulse Plenum Pressure Overpressure
(Ib-sec/in. 2) (psi) (psi)
10 0.7 13.65
20 T.1 27.3
30 1.4 41
40 1.8 54.6
50 2.2 68.2
60 2.5 81.8
70 2.9 95.5
80 3.25 109.0

6. The above values of plenum pressure and overpressure are plotted as
shown in Figure A-3,

The linear equations for the other tests in which plenum pressure is plotted
against impulse are as follows:

Filter Diameter Sand Depth Plenum Volume Equation
8 12 60 Y = 1.17 + ,08915(X)
8 24 60 Y = 0.59 + .0617(X)
8 12 45 Y = 0.92 + .1323(X)
8 24 45 Y = 0.47 + .0833(X)
8 36 45 Y = 0.25 + .049(X)
8 12 30 Y = L1 + ,1445(X)
8 24 30 Y = 0.83 + .105(X)
8 36 30 Y = 0.41 + .073(X)
12 24 105 Y = 0.35 + .056(X)
12 36 105 Y = 0.58 + .070(X)
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